Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Pediatr Nephrol ; 2023 May 02.
Article in English | MEDLINE | ID: covidwho-2314743

ABSTRACT

BACKGROUND: Despite recent well-established kidney tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), usually presenting as acute kidney injury (AKI), there are few published cases with SARS-CoV-2-related tubulointerstitial nephritis (TIN). We report an adolescent with TIN and delayed association with uveitis (TINU syndrome), where SARS-CoV-2 spike protein was identified in kidney biopsy. CASE-DIAGNOSIS/TREATMENT: A 12-year-old girl was assessed for a mild elevation of serum creatinine detected during the evaluation of systemic manifestations including asthenia, anorexia, abdominal pain, vomiting, and weight loss. Data of incomplete proximal tubular dysfunction (hypophosphatemia and hypouricemia with inappropriate urinary losses, low molecular weight proteinuria, and glucosuria) were also associated. Symptoms had initiated after a febrile respiratory infection with no known infectious cause. After 8 weeks, the patient tested positive in PCR for SARS-CoV-2 (Omicron variant). A subsequent percutaneous kidney biopsy revealed TIN and immunofluorescence staining with confocal microscopy detected the presence of SARS-CoV-2 protein S within the kidney interstitium. Steroid therapy was started with gradual tapering. Ten months after onset of clinical manifestations, as serum creatinine remained slightly elevated and kidney ultrasound showed mild bilateral parenchymal cortical thinning, a second percutaneous kidney biopsy was performed, without demonstrating acute inflammation or chronic changes, but SARS-CoV-2 protein S within the kidney tissue was again detected. At that moment, simultaneous routine ophthalmological examination revealed an asymptomatic bilateral anterior uveitis. CONCLUSIONS: We present a patient who was found to have SARS-CoV-2 in kidney tissue several weeks following onset of TINU syndrome. Although simultaneous infection by SARS-CoV-2 could not be demonstrated at onset of symptoms, since no other etiological cause was identified, we hypothesize that SARS-CoV-2 might have been involved in triggering the patient's illness.

2.
Immunogenetics ; 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2273259

ABSTRACT

MDA5, encoded by the IFIH1gene, is a cytoplasmic sensor of viral RNAs that triggers interferon (IFN) antiviral responses. Common and rare IFIH1 variants have been associated with the risk of type 1 diabetes and other immune-mediated disorders, and with the outcome of viral diseases. Variants associated with reduced IFN expression would increase the risk for severe viral disease. The MDA5/IFN pathway would play a critical role in the response to SARS-CoV-2 infection mediating the extent and severity of COVID-19. Here, we genotyped a cohort of 477 patients with critical ICU COVID-19 (109 death) for three IFIH1 functional variants: rs1990760 (p.Ala946Thr), rs35337543 (splicing variant, intron 8 + 1G > C), and rs35744605 (p.Glu627Stop). The main finding of our study was a significant increased frequency of rs1990760 C-carriers in early-onset patients (< 65 years) (p = 0.01; OR = 1.64, 95%CI = 1.18-2.43). This variant was also increased in critical vs. no-ICU patients and in critical vs. asymptomatic controls. The rs35744605 C variant was associated with increased blood IL6 levels at ICU admission. The rare rs35337543 splicing variant showed a trend toward protection from early-onset critical COVID-19. In conclusion, IFIH1 variants associated with reduced gene expression and lower IFN response might contribute to develop critical COVID-19 with an age-dependent effect.

3.
Eur Respir J ; 2022 Sep 14.
Article in English | MEDLINE | ID: covidwho-2232709

ABSTRACT

Infections caused by SARS-CoV-2 may cause a severe disease, termed COVID-19, with significant mortality. Host responses to this infection, mainly in terms of systemic inflammation, have emerged as key pathogenetic mechanisms, and their modulation has shown a mortality benefit.In a cohort of 56 critically-ill COVID-19 patients, peripheral blood transcriptomes were obtained at admission in an Intensive Care Unit (ICU) and clustered using an unsupervised algorithm. Differences in gene expression, circulating microRNAs (c-miRNA) and clinical data between clusters were assessed, and circulating cell populations estimated from sequencing data. A transcriptomic signature was defined and applied to an external cohort to validate the findings.We identified two transcriptomic clusters characterised by expression of either interferon-related or immune checkpoint genes, respectively. Steroids have cluster-specific effects, decreasing lymphocyte activation in the former but promoting B-cell activation in the latter. These profiles have different ICU outcome, in spite of no major clinical differences at ICU admission. A transcriptomic signature was used to identify these clusters in two external validation cohorts (with 50 and 60 patients), yielding similar results.These results reveal different underlying pathogenetic mechanisms and illustrate the potential of transcriptomics to identify patient endotypes in severe COVID-19, aimed to ultimately personalise their therapies.

4.
J Pediatr ; 243: 214-218.e5, 2022 04.
Article in English | MEDLINE | ID: covidwho-1757591

ABSTRACT

A previously healthy 12-year-old boy had severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related multisystem inflammatory syndrome (MIS-C) that was rapidly fatal. Autopsy revealed the presence of a large intracardiac thrombus. SARS-CoV-2 spike protein was detected in intestinal cells, supporting the hypothesis that viral presence in the gut may be related to the immunologic response of MIS-C.


Subject(s)
COVID-19 , Intestines , Spike Glycoprotein, Coronavirus , COVID-19/complications , COVID-19/pathology , Child , Fatal Outcome , Humans , Intestines/virology , Male , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
5.
Elife ; 112022 01 21.
Article in English | MEDLINE | ID: covidwho-1643864

ABSTRACT

Background: Variants in IFIH1, a gene coding the cytoplasmatic RNA sensor MDA5, regulate the response to viral infections. We hypothesized that IFIH1 rs199076 variants would modulate host response and outcome after severe COVID-19. Methods: Patients admitted to an intensive care unit (ICU) with confirmed COVID-19 were prospectively studied and rs1990760 variants determined. Peripheral blood gene expression, cell populations, and immune mediators were measured. Peripheral blood mononuclear cells from healthy volunteers were exposed to an MDA5 agonist and dexamethasone ex-vivo, and changes in gene expression assessed. ICU discharge and hospital death were modeled using rs1990760 variants and dexamethasone as factors in this cohort and in-silico clinical trials. Results: About 227 patients were studied. Patients with the IFIH1 rs1990760 TT variant showed a lower expression of inflammation-related pathways, an anti-inflammatory cell profile, and lower concentrations of pro-inflammatory mediators. Cells with TT variant exposed to an MDA5 agonist showed an increase in IL6 expression after dexamethasone treatment. All patients with the TT variant not treated with steroids survived their ICU stay (hazard ratio [HR]: 2.49, 95% confidence interval [CI]: 1.29-4.79). Patients with a TT variant treated with dexamethasone showed an increased hospital mortality (HR: 2.19, 95% CI: 1.01-4.87) and serum IL-6. In-silico clinical trials supported these findings. Conclusions: COVID-19 patients with the IFIH1 rs1990760 TT variant show an attenuated inflammatory response and better outcomes. Dexamethasone may reverse this anti-inflammatory phenotype. Funding: Centro de Investigación Biomédica en Red (CB17/06/00021), Instituto de Salud Carlos III (PI19/00184 and PI20/01360), and Fundació La Marató de TV3 (413/C/2021).


Patients with severe COVID-19 often need mechanical ventilation to help them breathe and other types of intensive care. The outcome for many of these patients depends on how their immune system reacts to the infection. If the inflammatory response triggered by the immune system is too strong, this can cause further harm to the patient. One gene that plays an important role in inflammation is IFIH1 which encodes a protein that helps the body to recognize viruses. There are multiple versions of this gene which each produce a slightly different protein. It is possible that this variation impacts how the immune system responds to the virus that causes COVID-19. To investigate, Amado-Rodríguez, Salgado del Riego et al. analyzed the IFIH1 gene in 227 patients admitted to an intensive care unit in Spain for severe COVID-19 between March and December 2020. They found that patients with a specific version of the gene called TT experienced less inflammation and were more likely to survive the infection. Physicians typically treat patients with moderate to severe COVID-19 with corticosteroid drugs that reduce the inflammatory response. However, Amado-Rodríguez, Salgado del Riego et al. found that patients with the TT version of the IFIH1 gene were at greater risk of dying if they received corticosteroids. The team then applied the distribution of IFIH1 variants among different ethnic ancestries to data from a previous clinical trial, and simulated the effects of corticosteroid treatment. This 'mock' clinical trial supported their findings from the patient-derived data, which were also validated by laboratory experiments on immune cells from individuals with the TT gene. The work by Amado-Rodríguez, Salgado del Riego et al. suggests that while corticosteroids benefit some patients, they may cause harm to others. However, a real-world clinical trial is needed to determine whether patients with the TT version of the IFIH1 gene would do better without steroids.


Subject(s)
COVID-19/genetics , Inflammation/genetics , Interferon-Induced Helicase, IFIH1/genetics , SARS-CoV-2/pathogenicity , Aged , COVID-19/complications , Critical Illness , DEAD-box RNA Helicases/metabolism , Female , Humans , Inflammation/metabolism , Male , Middle Aged
7.
Transl Res ; 233: 104-116, 2021 07.
Article in English | MEDLINE | ID: covidwho-1051128

ABSTRACT

The p53/p21 pathway is activated in response to cell stress. However, its role in acute lung injury has not been elucidated. Acute lung injury is associated with disruption of the alveolo-capillary barrier leading to acute respiratory distress syndrome (ARDS). Mechanical ventilation may be necessary to support gas exchange in patients with ARDS, however, high positive airway pressures can cause regional overdistension of alveolar units and aggravate lung injury. Here, we report that acute lung injury and alveolar overstretching activate the p53/p21 pathway to maintain homeostasis and avoid massive cell apoptosis. A systematic pooling of transcriptomic data from animal models of lung injury demonstrates the enrichment of specific p53- and p21-dependent gene signatures and a validated senescence profile. In a clinically relevant, murine model of acid aspiration and mechanical ventilation, we observed changes in the nuclear envelope and the underlying chromatin, DNA damage and activation of the Tp53/p21 pathway. Absence of Cdkn1a decreased the senescent response, but worsened lung injury due to increased cell apoptosis. Conversely, treatment with lopinavir and/or ritonavir led to Cdkn1a overexpression and ameliorated cell apoptosis and lung injury. The activation of these mechanisms was associated with early markers of senescence, including expression of senescence-related genes and increases in senescence-associated heterochromatin foci in alveolar cells. Autopsy samples from lungs of patients with ARDS revealed increased senescence-associated heterochromatin foci. Collectively, these results suggest that acute lung injury activates p53/p21 as an antiapoptotic mechanism to ameliorate damage, but with the side effect of induction of senescence.


Subject(s)
Acute Lung Injury/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Acids/administration & dosage , Acids/toxicity , Acute Lung Injury/etiology , Acute Lung Injury/pathology , Animals , Apoptosis , Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p21/deficiency , Cyclin-Dependent Kinase Inhibitor p21/genetics , DNA Damage , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Signal Transduction , Stress, Mechanical , Translational Research, Biomedical , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL